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Equations of State and Phase Equilibria of Stishovite and 
a Coesitelike Phase from Shock-Wave and Other Data' 

GEOFFREY F. DAVIES 

Seismologiclll Laboratory, California Institute of Technology, Pasadena, California 91109 

Shock-wave, static-compression (X ray), ultrasonic, thermal expansion, and thermodynamic 
data are simultaneously inverted to determine the equations of state of stishovite and a 
coesitelike SiO. phase. All the stishovite data except the thermal expansion data are 
satisfied by a Mie-Griineisen-type equation of state having a zero pressure bulk modulus K 
of about 3.50 ± 0.1 Mb, a pressure derivative dK/dP of 3.3 ± 1, and a Griineisen parameter, 
initially 1.25 ± 0.1 , that decreases slowly with compression. The volume coefficient of thermal 
expansion at ambient conditions is found to be 13 ± 1 X 1O-8jOK, in comparison with 

• 16.4 ± 1.3 measured by Weaver. Some Hugoniot data of Trunin et a1. for very porous 
quartz have densities very close to the density of coesite. However, a calculation of the 
coesite-stishovite phase line shows that the coesitelike phase persists to about twice the 
predicted transition pressure at 10,OoooK. It is suggested that the discrepancy can be explained 
if this phase is interpreted as a liquid of about coesite density. 

Since the discovery of the dense high-pressure 
silica polymorph stishovite [Stishov and Popova, 
1961] and its subsequent identification both in 
natural silica from a meteor crater [Chao et aZ., 
1962] and as the dense phase obtained in the 
shock-wave experiments of Wackerle [1962] 
by McQueen et al. [1963], a variety of ex­
periments have yielded considerable data on 
stishovite. To date, these data include more 
shock-wave, stat ic-compression (X ray), thermo­
dynamic, thermal expansion, and, \"fry recently, 
ultrflsonic dfltfl. These dfltfl , with their sources 
and other relevant information, fire summflrized 
in Table 1. A succession of anfll~'ses of these data 
hfls accompanied their accumulation r Anderson 
and Kanamori, 1968; Ahrens et al ., 1969, 1970]. 
This paper is flnother in that succession . 

The Griineisen pflrameter y is an important 
quantity thflt characterizes thermfll effects in 
the equation of ~tate. Ah"ens et al. [1970], re­
turning to the method used by McQueen et al. 
[1963], determined the yalues of y at large 
compression from the differenre in pressure 
between Hl1goniots correspondin~ to different 
initial densities. This method is preferable to 

1 Contribution 2101, Diyision of Geological ami 
Plflnetary Scirncrs, Californifl Institute of T('C'h­
nology. 

Copyright © 1973 by the American Geophysical l·nion. 

that used by Anderson and Kanamori [1968j 
and Ahrens et al. [1969], who used the Slater 
[1939] or Dugdale and MacDonald [1953] 
formulas for the volume dependence of y. 
These formulas have been severely criticized 
because they fai l to take account of the fre­
quently large pressure dependence of the shear 
modes of vibration [Knopofj a:nd Shapiro, 1969]. 

Fitting these results with the functional form 

(1) 

where V is the specific volume, A is a constant, 
and the subscript 0 denotes zero pressure, 
Ahrens et aI. [1970] adjusted Yo until the vol­
ume roefficirnt of thermal expansion a, ob­
tained from the identity 

(2) 

where K, is determined from the shock-wave 
flnfllysi8, agreed with the measured Yfllue. (The 
ynlue used was the preliminar~' value of a = 15 
X lO-";oK, obtflined from .T. S. Weaver (per­
sonal rommuniration, 1969), rf. Table 1.) In 
(2). K, is the isentropic bulk modulus, p is 
the densit~· , and Cp is the specific heat at con­
st:mt pressure. 

Sinr(' that IInalysi8. sryeral new sets of data 
haw been published. The data of Trunin et al. 
[1971(1] ~reatl~' exteud t he pressure range of 
the Hugoniot data. and those of Tnmin et al. 
[1971b ] extend the range of initial porosities. 
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Code 

Sl 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 
S10 
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TABLE 1a. Shock-Wave and Static-Compression Data for Stishovite 

Source 

Wackerle [1962] 
Al't8huler et al. [1965] 
Trunin et al . [1971a] 
Wackerle [1962] 

Shock-Wave Data 

H. Shipman (private communication, 1969) 
McQueen [1968] 
Trunin et al . [1971b] 
Jones et al. [1968] 
Trunin et al. [1971b] 
Trunin et al. [1971b] 

No . of 
Points 

12 
3 

12 
3 
5 

34 
2 
6 
6 
3* 

Static-CompreS8ion Data 

Initial 
Density, 

g/cm 3 

2.65 
2.65 
2.65 
2.20 
2 . 20 
2.20 
2.20 
1.98 
1.77 
1.55 

Pressure 
Range, 

Mb 

0 .4 to 0 . 7 
0.6 to 2.0 
0.4 to 6 . 5 
0.5 to 0.6 
0.6 to 1.6 
0.4 to 0.8 
0.5 to 1.6 
0.4 to 1.4 
0.2 to 2.3 
0 . 3 to 0.6 
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Xl 
X2 

Liu et al. [1972] 9 
14 

o to 223t 
Bas8ett and Barnett [1970] o to 85t 

*May be interpreted as coesite-stishovite mixture (see text). 
t Va1ue in kilobars. 

The resultant wide spread of the Hugoniots 
provides stronger constraints on y . Also, Mizu­
tani et d. [1972] have measured ultrasonica lly 
the compressional- and shear-wave velocities of 
stishovite, and thus another constraint on K , 
is provided. 

In addi tion to benefiting from t he ne~ly 

available data and using a clifferent form of 
the equation of state (discussed below), the 
present analysis determines simultaneously the 
compressional and t hermal parts of the equa­
tion of state by adjusting simultaneously all 
free parameters to give a least-squares fi t to 
all t he data. This procedure accomplishes im­
plicitly t he two sequent ial stages of the analysis 
of Ahrens et d. [1970]. 

T runin et aZ. [1971b] noted that the Hugo­
niots of their most porous quartz samples 
achieved densities significantly less than the 
density of stishovite and t hat t hey extrapolated 
approximately to t he zero pressure density of 
coesite. On this basis they identified these 
Hugoniots as representing the coesite phase. 
Although coesite is stable at room tempera­
ture in t he approximate pressure range 30-70 kb 
between the stability fields of quartz and stisho­
vite, coesite has not previously been observed 
in shock-wave experiments, t he transformation 
usually being directly from quartz to stishovite. 
There are enough other coesite data (Table 2) 
that, when they arc combined with these Hugo­
niot data and when it is assumed that t hey do 

TABLE lb. Other Data for Stishovite 

Source Quantity 

Mizutani et al. [1972] 

Weaver [1971] 

Holm et at. [1967] 

Kieffer and Kamb [1972] 

Robie et at. [1966] 

Compressional-wave velocity 
Shear-wave velocity 
Isentropic bulk modulus 

Volume coefficient of 
thermal expansion (300 o K) 

Specific heat at constant 
pressure (300 o K) 

High temperature limit of 
Debye temperature 

Density, zero pressure, 
298°K 

Value 

~ = 11.0 km/sec 
8 = 5.50 km/sec 

K8 3.46 ± 0.24 Mb 

a = 16 .4 ± 1.3/ o K 

Cp 7.15 x 106 ergs/g OK 

eD • 1120 0 K 

Po = 4.287 g/cm3 



. 
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TABLE 2a. Shock-Wave and Static-Compression Data for Coesite 

Code Source 
No. of 
Points 

Initial 
Density, 

g/cm3 

Pressure 
Range, 

kb 

Shock-Wave Data 
Sl1 Trunin et al. [1971b] 3 1.35 119 to 322 
S12 Trunin et al. [1971b] 2 1.35 454 to 552 
S13 Trunin et al. [1971b] 5 1.15 65 to 477 

Static-Compression Data 
X3 Bassett and Barnett [1970] 

indeed represent coesite, the equation of state 
can be appro)"lmately determined. The success 
of this procedure seems to support the coesite 
identification, but other calculations sugge t 
otherwise, as will be seen . 

Trunin et al. [1971b] also calculated ap­
proximate Hugoniot temperatures and sug­
gested that the boundary separating the coesite 
and stishovite fields in a pre sure-temperature 
plot represented t he coesite-stishovite phase 
t ransition line. Hugoniot temperatures have 
been recalculated here, and, in addition, the 
coesite-stishovite phase line has been indepen­
dently calculated from t he equations of state 
of the two phases, the coesite identification 
again being assumed. There is a large dis­
crepancy between the two approaches. It is 
suggested that the new phase may in fact be 
a liquid of approximately the density of coesite 
rather than coesite itself. Because some of the 

11 o to 80 

properties of this liquid are unknown, it is 
necessary to proceed as if the phase were solid 
coesite and to examine the plausibility of the 
results. 

ANALYSIS 

A complete equation of state must account 
for both compressional and t hermal effects. 
Previous studies have accounted for these effects 
by invoking the Mie-Grtineisen equation, in­
corporating a finite strain description of com­
pressional effects with various expre sions for 
t he Griineisen parameter to describe t hermal 
effects, as was discu sed in the introduction . 
The problem is to find an expression for y 
that does not involve over restrictive assump­
tions and that has some theoretical foundation. 

Thomsen [1970] has considered t he question 
of incorporating the results of t he theory of 
anharmonic lattice dynamics into finite strain 

TABLE 2b. Other Data for Coesite 

Source Quantity Value 

Skinner [19661 Volume coefficient of a = 8. 0 x 10-6/"K 
thermal expansion (293°K) 

Holm et al. [19671 Specific heat at constant Cp = 7.46 x 106 ergs/"K 
pressure (300 o K) 

Kieffer and KaniJ [ 1972] High temperature limit of SD • 11700 K 
Debye temperature 

Robie et aZ. (19661 Density, zero pressure, Po 2.91 g/cm3 
298°K 

Mizutani et aZ. [19721 Compressional-wave velocity V = 7.53 km/sec 
Shear-wave velocity ~= 4.19 km/sec 
Isentropic bulk modulus Ks = 0.97 Mb 
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theory. Lattice dynamics in the fourth-order 
approximation lead, under certain assumptions, 
to the Mie-Gruneisen equation [Leibfried and 
L udwig, 1961], and Thomsen [1970] derived 
an expansion of tbis equation into the domain 
of finite strain . His equation thus describes 
both compressional and t hermal effects. It is 
written in terms of a particular Lagrangian 
st rain and involves six adjustable parameters. 
Subsequently it has been sbown (G. F. Davies, 
unpublished manuscript , 1972) that analogous 
equations can be derived in terms of other 
strains and t hat t he result ing form of t he Mie­
Gruneisen equation can be written in the form 
of a conventional finite strain equation. 

In accord with these results, the 300 0 K 
isotherm will be represented in this study by 
the fourth-order Eulerian finite strain equation 

P( V) = - 3Ko(1 - 2E)5/2 {E - !(Ko' - 4)E2 

+ ![KoKo" + Ko'(Ko' - 7) + '!-~-~Yl (3) 

where Ko is the bulk modulus at zero pressure 
and 300oK, a prime denotes an isothermal 
pressure derivative, and 

E = HI - (V / VO)-2/3] (4) 

is t he Eulerian strain parameter. Neglecting 
the last term in (3) reduces it to t he familiar 
Birch-Murnaghan equation [e.g., Birch, 1952]. 

The part icular expression for y to be us~d 
here is derived (G. F. Davies, unpublished 
manuscript , 1972) by expanding to second 
order the squared eigenfrequencies of the lattice 
in terms of displacements of the atoms from 
tbeir mean lattice posit ions and substituting the 
result in the usual defini tion of y: 

dlnw 
I' - --

d In V 

lattice potent ial energy to fourth order in terms 
of atomic displacements on which t he fourth­
order theory of lattice dynamics is based [L eib­
fried and L udwig, 1961]. The quant ity w in 
(5) can be regarded as a characteristic eigen­
frequency of the lattice. 

The constants g and h in (5) are parameters 
to be determined. They are related to measured 
quantities by the following series of equations 
(G. F. Davies, unpublished manuscript, 1972) . 

g = -61'0 (7) 

h= g [3(: ~ ;) T . 0 + g - 1 ] (8) 

I' = VaKT/ Cv (9) 

(a In 1') 
a In V T 

(a In Cv) 
1 + OT - KT' - a In V T 

(10) 

OT = -1/ aKTI(aKr/aT)p (ll) 

Here C. is the specific heat at constant volume 
and the subscript T denotes isothermal deriva­
t ives. Equations 9 and 10 are thermodynamic 
ident ities [Bassett et al., 1968] . 

An equation for Hugoniot pressure can be 
derived by combining the Mie-Gruneisen equa­
tion with the Rankine-Hugoniot conservation 
equations. In this way the Hugoniot pressure 
can be related to any other thermodynamic 
locus, such as an isentrope or an isotherm. An 
equation relating t he Hugoniot pressure to an 
isent rope has been given by Ahrens et 01. [1969] . 
Another equation relating Hugoniot pressure to 
the isotherm of t be static lattice has been given 
by Thomsen [1970]. This equation has been 
generalized to include t he effects of a pbase 
change and initial porosity (G. F. Davies, un­
published manuscript, 1972) ; the result is 

(1 + e)(g + he) 

6(1 + ge + !hi ) 
(
V' V V) (5) Ph f -"2 - -:; = <t>(V) - <t>(Vo) 

Here e is another strain parameter defined as 

e = (V/ VO)I / 3 - 1 (6) 

The strain e is linea r in atomic displacements, 
so that a second-order expansion in terms of e 
is identical to a second-order expansion in 
terms of atomic displacements. This result , in 
t urn, is consistent wi th the expansion of the 

+ V d4> _ U( yo) + E, 
I' dV 

(12) 

where p. is the Hugoniot pressure, V.' is the 
initial density of the sample, Vo is t he zero 
pressure density of the phase in question, U 
is the thermal energy, E, is the zero pressure 
phase t ransformation energy, and <p is the po­
tent ial energy of the static lattice. The quan-



4924 GEOFFREY F. DAVIES 

tity .cp can be related to the expansion of the 
isotherm (equation 3) through the constants 9 
and h (9. F. Davies, unpublished manuscript, 
1972). 

To summarize, expressions for the 3000 K 
isotherm and for the Hugoniots are given by 
(3) and (12) in terms of the six parameters 
Vo, Ko, K.', Ko", g, and h. The only essentially 
new thing in this analysis is the equation for 
y (equation 5). It should be noted that this 
equation gives a volume dependence of y qualita­
tively similar to, for instance, (1). In the pres­
ent application the volume dependence of y is 
constrained by the Hugoniot data, and so the 
quantitative differences between (1) and (5), 
for instance, will be absorbed by their param­
eters. Thus with (5) the value of 8T will be 
determined in this way (see equations 10 and 
11; all other quantities in (7)-(11) are con­
strained by other aspects of the data). Because 
8T is otherwise unknown, the only doubt re­
sulting from this procedure concerns the specific 
value of 8T • 

The specific heat at constant volume has been 
approximated in these calculations by the Debye 
model. A discussion of the inadequacy of the 
Debye model for a number of minerals has been 
given by Kieffer and Kamb [1972]. Their re­
sults indicate that, for the purposes of this dis­
cussion, the Debye model is not too inadequate 
for stishovite. It is less appropriate for coesite, 
but, in view of the other uncertainties of the 
coesite equation of state (see below), it is an 
acceptable approx·imation. 

Hugoniot temperatures are calculated accord­
ing to a method given by Ahrens et al. [1969]. 
For this calculation the volume dependence of 
the Debye temperature (JD is required. The 
Debye temperature is proportional to the. Debye 
cutoff frequency. Thus, for consistency with the 
treatment of lattice dynamics discussed earlier, 
the square of (J D may be expanded to second 
order in e. Thus 

(V) (J (V)(l + ge + !.2he2)1 / 2 (JD = D 0 (13) 

EQUATIONS OF STATE 

General. The procedure used here to deter­
mine the equation of state was to calculate, 
according to the last section, all relevant 
quantities, such as Hugoniots, isotherms, bulk 
modulus, and so forth, and to adjust the equa-

tion-of-state parameters to obtain a weighted 
least-squares fit to the data. The weighting 
basically was done according to the estimated 
standard error of the data, but it was also ad­
justed in some cases, as will be seen, to prefer­
entially fit some of the data. 

Some general features of the silica Hugoniot 
data and a representative set of calculated 
Hugoniots and isotherms are illustrated in Fig­
ure 1. Most of the Hugoniot data radiate from 
one of two points: the coesite or sitishovite 
zero pressure densities. The apparent zero pres­
sure density of the data is the basis of the 
identification by Tru.nin et al. [1971bJ of the 
Hugoniots of the two most porous silica samples 
as being in the coesite phase. This identification 
will be discussed subsequently; in the mean­
time the phase will be referred to as 'coesite.' 

The Hugoniots of successively more porous 
silica, which start at zero porosity, become 
successively steeper up to the initial density 
Po' of 1.77 g/ cm", whose Hugoniot is nearly 
vertical on this plot. The 1.55-g/ cm3 initial 
density Hugoniot data are at densities lower 
than but fairly close to the zero pressure 3000 K 
stishovite density, whereas the 1.35- and 1.15-
g/ cm3 initial density Hugoniots are less steep 
and centered about the coesite density. The 
po' = 1.55 g/ cm" Hugoniot may represent a 
mixture of 'coesite' and stishovite [Trunin et 
al., 1971b]. This point will be discussed further 
below. 

The calculated Hugoniots shown in Figure 1 
(stishovite case 2 and 'coesite' , case 1, dis­
cussed below) reproduce these features fairly 
well . However, the coesite-stishovite transition 
is not predicted by these calculations. Thus 
stishovite Hugoniots corresponding to all seven 
initial porosities are shown. The three most 
porous Hugoniots are notable for having nega­
tive slopes; there is a critical initial density for 
which the Hugoniot is vertical. The two most 
porous Hugoniots are shown as dashed lines, 
since they clearly fail to represent the corre­
sponding data. The pC: .= 1.55 Hugoniot data ap­
proach but do not agree very well with the 
corresponding calculated stishovite curve shown 
in Figure 1. Only the two most porous 'coesite' 
Hugoniots are shown. The other Hugoniots will 
lie between these Hugoniots and the 3000 K iso­
therm (shown as a short-dashed line) and clearly 
will not coincide with the corresponding data. 
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Fig. 1. Hugoniot data of quartz and porous quartz and calculated Hugoniots and 3000 K 
isotherms of 'coesite' and stishovite. Da.ta sources are given in Tables 1 and 2. Calculated 
curves are from stishovite case 2 (Table 4) and 'coesite' case 1 (Table 6). Numbers 
labeling curves indicate the initial density of the shocked sample. 

The details of t he analyses will now be dis­
cussed individually for stishovite and 'coesite,' 
and the effects of assumptions made in t he 
analyses will be noted. However, it will be seen 
that the preceding general picture is not grea~ly 

perturbed. 
Stishovite . The results of three different 

analyses of the stishovite data will now be given. 
In the first case, standard errors of the pressure 
of each set of compression data (shock and 
static) were estimated, and the data were 
weighted accordingly. (The quant ity minimized 
was :L(P: - P,)'ja,', where P: is t he calcu­
lated pressure, P, is t he observed pressure, a , 
is the estimated standard error, and the sum­
;mation is over all data points [e.g., Mathews 
and Walker, 1965].) Although Ko is known 
approximately from the ult rasonic measure­
ments of Mizutani et al . [1972J , we preferred 
to determine it independently from the com­
pression data . Thus t he quantit ies Ko, Ko', Ko", 

and (aKj aT)p were determined from the com­
pression data, Vo and a were taken from Table 
1, and C. was calculated from the Debye model. 
For the calculation of C., the Debye temperature 
given by Kieffer and Kamb [1972J as the high 

temperature limit of the data of Holm et al. 
[1967J was used. The estimated standard errors 
are listed in Table 3, t he resulting values of the 
parameters and their calculated standard errors 
are listed in Table 4 (case 1) , and t he calcu­
lated Hugoniots and the 300 0 K isotherms are 
compared with the Hugoniot data in Figure 2. 
It can be seen that this solution does not fit 
the Hugoniots of the more porous samples 

Data 

Sl 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 
SID 
Xl 
X2 

TABLE 3. Standard Errors Assumed 
for Stishovite Compression Data 

(All values in megabars.) 

Cases 
1, 2, and 4 

0 . 3 
0.2 
0 . 2 
0.3 
0.3 
0.6 
0 . 3 
1.0 
1.0 
1.0 
0 .015 
0.015 

Cases 
3 and 5 

0.5 
0.2 
0.1 
0.5 
0.5 
1.0 
0.3 
0.5 
0.1 
1.0 
0.015 
0.015 
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TABLE 4. Stishovite Parameters Found in Various Cases 

(aKo/aT)p, a, d In y 
aIi1V Case Ka I KaKa" kb;oK 1O- 6 ;oK Yo 

1 3. 42 4.9 -2 -0.61 16.4* 1.61 5.7 10.9 
(0.09) (0.7) (5) (0.07) (0.1) (1. 6) (1. 6) 

2 3.50 3.5 -2 -0.30 12.9 1.30 3.1 6.7 
(0.15) (1.0) (3) (0.10) (1. 3) (0.15) (3) (3) 

3 3.55 2.8 -2 -0.20 12.0 1. 22 1.9 4.7 
(0.13) (0.4) (1) (0.03) (0.5) (0.07) (0.7) (0.7) 

4 3.45* 3.8 -3 -0.32 13.3 1. 32 3.3 7.1 
(0 .8) (3) (0.10) (1 . 1) (0.15) (3) (3) 

5 3.45* 3.0 -2 -0.20 12.2 1.22 1.7 4.7 
(0.2) (1) (0.02) (0.2) (0.09) (0.7) (0.7) 

2a 3.57 2.1 27 -0.23 12.6 1. 30 2.9 5.0 
(0.19) (1.8) (20) (0.10) (1.1) (0.14) (2.5) (2) 

3a 3.50 2.2 14 -0.17 12 . 1 1.22 1.8 4.0 
(0.16) (1. 0) (10) (0.05) (0.6) (0.08) (1) (1) 

Standard errors due to scatter in the data are given in parentheses. 
*Fixed value from Table 1. 

very well at all, partly because the data points 
on the lower-porosity Hugoniots have a greater 
density and partly because the value of Yo is con­
strained to a high value by the value of a used 
and the value of Ko required to fit the lower­
porosity Hugoniots. 

As a first step toward improving the fit of the 
higher-porosity Hugoniots, a was allowed to be 
determined by the compression data, along with 
the other parameters previously determined. 
The results are given in Table 4 (case 2) and 
illustrated in Figure 1, the stishovite curves 
being those corresponding to the present case. 
Lowering the value of a to 13 X lO-'jOK has 
lowered Yo to 1.3 and significantly improved 
the fit to the higher-porosity Hugoniots. How­
ever, the full range of the Hugoniot data is not 
shown in Figures 1 and 2. The data of TI'wni,n 

et 01. [1971a, b J extending up to 6.5 Mb for 
the initial densities of 1.77 and 2.65 gj cm" are 
shown in Figure 3. The corresponding calculated 
Hugoniots and the 3000 K isotherm of the pres­
ent case are also shown (case 2). The 1.77 -gj em" 
Hugoniot curve does not fit the corresponding 
datum at 2.3 Mb very well. 

To further improve the fit to the higher­
porosity Hugoniot, the Hugoniot data were 
assigned new standard errors to weight the 
porous data more heavily relative to the other 
data. The new set of standard errors is given 
in Table 3. The results are given in Table 4 
(case 3) and illustrated in Figures 3 and 4. 
Figure 3 in particular shows that the fit to 
the 1.77-glcm" Hugoniot data has improved. 
The value of a has decreased further to 12 X 
1O-6j0K. 

The values of the zero pressure bulk modulus 
Ko range from 3.42 to 3.55 Mb for the three 
cases considered. These values fall within the 
range 3.46 ± 0.24 Mb given by Mizutani et 01. 
[1972J for the isentropic bulk modulus de­
termined from elastic-wave velocity measure­
ments. The 3000 K isotherms for these cases 
also agree well with the static-compression data 
of Liu et 01. [1972]. These data are shown in 
Figure 5, together with the three calculated iso­
therms. Also shown are the static-compression 
data of Bassett and Barnett [1970J. These data 
have been discussed by Liu et 01. [1972J , who 
suggest that the five highest-pressure data points 
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Fig. 2. Hugoniot data of stishovite and calcu­
lated Hugoniots and 300°l{ isotherms from case 1 
(Table 4). Symbols are those used in Figure 1. 

are systematically low because the anvils of t he 
tetrahedral press used by Bassett and Barnett 
may have come into contact ut about t his pres­
sure. These points were not used in the present 
analysis. The calculated isotherms agree with 
the remaining data within the scatter of the 
data. 
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6 f- Cose 2 
Case 3 

::< 4 

.,; 

~ 
v> .. 
a: 

o 1./1 1 
4 2 6 

Denslly, g / cm' 

Fig. 3. Very high-pressure Hugoniot data of 
stishovite and calculated Hugoniots and isotherms 
from case 2 (solid line) and case 3 (dashed line). 
Only the Hugoniots corresponding to initial den­
sities 2.65 and 1.77 glcm" are shown. Symbols are 
those used in Figure 1. 
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(Table 4). Symbols are those used in Figure 1. 

The last two cases were rerun with Ko given 
the fixed value of 3.45 Mb, which gives an 
isentropic bulk modulus very close to t hat 
given by Mizutani et aL. [1972J . (In all cases 
given here, the isentropic bulk modulus is about 
0.02 Mb greater than the isothermal bulk modu­
lus.) The results are given in Table 4 (cases 4 
and 5) . The changes from the previous solu­
tions are small. The standard errors are cal­
culated with the 0.24-Mb error given by Mizu­
tani et al. for the bulk modulus. 

In view of the current discussion of the 
relative merits of t he Lagrangian and Eulerian 
formulations of finite strain [Thomsen, 1970, 
1972; G. F. Davies, unpublished manuscripts, 
1972J, the dependence of the preceding results 
on the form of the equation of state should be 
tested. This testing was done by using a 
Lagrangian isotherm [Thomsen, 1970 ; G. F. 
Davies, llllpublished manuscript, 1972J but 
keeping (5) for y. This formulation does not 
correspond to the Lagrangian equation used by 
Thomsen [1970J, who used a different expres­
sion for y . TillS formulation has been discussed 
previously (G. F. Davies, unpublished manu­
script, 1972). In any case, using a different 
equation for y should yield a significantly dif­
ferent value for (aKj aT)p only, for which 
we have no other control. Cases 2 and 
3 were repeated with the Lagrangian iso-
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thermo The results are given in Table 4 (cases 
2a and 3a). The values of Ko are comparable, 
those of Ko' somewhat lower, those of KoKo" 
much higher, and those of the other parameters 
comparable to the corresponding values in cases 
2 and 3. In particular, the value of a is very 
little changed; it is still much lower than the 
value given by Weaver [1971]. 

Ahrens et al. [1970J interpreted the Po' = 
1.98 g/cm3 data as indicating a reversal in the 
slope of the Hugoniot at about 1.2 Mb (Figure 
1). A criterion was given relating the density 
at which the slope of the Hugoniot becomes 
infinite to the value of y at that point: y = 
2/[(p/po') - 1]. However, it can be seen 
from equation 12 for the Hugoniot that the 
Hugoniot pressure also becomes infinite at this 
density; in other words, the Hugoniot pres­
sure asymptotes to infinity rather than 'bencIs 
over.' This interpretation biased the high­
pressure values of y to lower values, since it 
favored an interpretation in which the Hugo­
niots were crowded together at these compres­
sions. The discrepancy between the results of 
Ahrens et al. [1970] and those of this study 
is due partly to the last effect, partly to the 
fewer data available at the time, and partly 
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Fig. 5. Static-compression data of stishovite 
compared with 3000 K isotherms calculated from 
cases 1, 2, and 3. 

to the higher value of a used. Case 1 given 
here is closer to the solution of Ahrens et al. 
and shows similar effects. 

The main limitation of the present analysis 
is probably the use of an equation based on the 
Mie-Griineisen approximation, which allows no 
temperature dependence of y. At temperatures 
below the Debye temperature, y is probably 
temperature-dependent because of mode under­
saturation, and, at very high temperatures 
(greater than several thousana degrees Kelvin, 
say)., it is possible that we are dealing with a 
fluid phase (see below) having a different value 
of y. In connection with mode undersaturation, 
it is interesting to note that Nicol a:nd Fong 
[1971J, measuring Raman spectra, have ob­
served a negative mode y for a mode of rutile, 
which is isostructural with stishovite. 

The temperature dependence of a is domi­
nated by the temperature dependence of C. 
and possibly of y (see equation 2). Weaver 
[1971] notes that his value of { = caa/ aT)./a' 
= 33 ± 17 seems too mall; it implies that 
(ay/ aT)" = -5 X 1O-3/ oK, a value sufficient to 
reduce y to zero within 300°K. With (ay/ aT) . 
= 0, Weaver estimates that { = 190 ± 20. If we 
take Weaver's mean value of a in the range 
300o-900oK (i.e., a = 18.6 X 1O-6/ oK) to 
apply to 6000 K and combine it with the 3000 K 
value of 13 X 1O-6;oK found here, we get 
{ = 100 approximately. This value is inter­
mediate, and thus a moderate value of (ay/ aT) . 
is implied. Of course, it has not been determined 
whether this value would be allowed by Weaver's 
data. 

To conclude this section, it appears that 
most relevant stishovite data, with the excep­
tion of a, can be incorporated with reasonable 
accuracy into the Mie-Griineisen-type of equa­
tion of state used here. Case 2 is the solution 
preferred by the author. Case 3 fit the Hugo­
niot data better, but its reliance on the Mie­
Griineisen equation ma.y not be appropriate 
for the very high-temperature Hugoniot data. 
If it is preferred not to rely on the analysis of 
any of the porous Hugoniots, case 1 is an ap­
propriate solution. 

'Coesite.' This section will assume that the 
Hugoniots of the most porous quartz samples 
represent coesite. The difficulties raised by this 
assumption and an alternative interpretation 
will be discussed in the next section. 
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Because of the smaller range and quantity 
of 'coesite' data, it is not possible to determine 
as many parameters of t he equation of state 
as were determined for the st ishovite data. Be­
cause the data e}..1.end to only about 15% vol­
ume compression, it is not necessary to ·use th~ 
full fourth-order version of (3), and so the f ' 

term is here assumed to be zero. Because t here 
is not a large range in the initial po rosities of 
the Hugoniot data, t he volume dependence of 
y, and hence (aKl aTh, cannot be well deter­
mined. Conversely, the value of (aKl aT )p does 
not strongly affect the equation of state in t his 
range. A value of - 0.05 kb/ oK was therefore 
assumed. This value of (aKl aTh gives values of 
8T in the range 5-10, a range that seems reason­
able on the basis of a few other examples, in­
cluding stishovite [e.g., Anderson et al ., 1968; 
R oberts and Ruppin, 1971] . The values of 
Vo and IX were taken from Table 2, and C. was 
calculated from the Debye model. 

It can be seen from Figure 1 that the po' = 
1.35 g/ cm' Hugoniot data are considerably 
scattered and that they do not t rend toward 
the coesite density of 2.91 g/ cm" perhaps be­
cause there has been a part ial conversion t o 
the stishovite phase. When t hey are compared 
to the Po' = 1.15 g/ cm3 Hugoniot data, the 
lower three points in part icular are seen to 
deviate toward higher densities . Two cases 
were therefore t reated, one including these 
three points, t he other excluding them. 

Initially both Ko and Ko' were determined 
by the Hugoniot and stati c-compression data. 
The resul ts are given as cases 1 and 2 in Table 
6, case 1 excluding the three doubtful fIugoniot 
points and case 2 including them. The standard 
errors used to weight the compression data are 
given in Table 5. Case 1 is illustrat ed in Figure 
1, case 2 in Figure 6. The bulk moduli in t hese 
two cases are signifi cantly above t he value of 
0.97 Mb measured ultrasonically by Mizutani 
et al. (H. Mizutani , private communication, 
1972) , and so a third case was run with Ko 
fixed at t his value and only Ka' determined 
by the compression data (Table 6 and Figure 
6). It can be seen (Figure 6) that case 3 does 
not fit t he static-compression data of Bassett 
and Barnett [1970] very well, and it fa lls below 
most of the corresponding Hugoniot data. 

The scatter in the Hugoniot data and the 
uncer tain ty in their in terpretation are such that 

TABLE 5. Standard Errors Assumed 
f or the 'Coesite' Compression Data 

Erro.r, 
Data Mb 

S11 0 . 20 
S12 0.10 
S13 0.10 
X3 0 .02 

they cannot defini tely be said to be discordant 
with case 3, but the discrepancy between case 
3 and t he static-compression data seems to be 
significant. Because of this discrepancy, the 
equation of state of coesite must remain some­
what uncertain at t his stage. 

S i02 PHASE EQU ILIBRI A 

By using t he equations of state just given, 
the Gibbs free energies of 'coesite' and stisho­
vite can now be calculated, and t he 'coesite'­
stishovite t ransit ion pressure can be calculated 
as a function of temperature by using the 
condition that t he Gibbs free energies of the 
two phases are equal at the phase t ransition. 

For detailed comparison the Hugoniot tem­
peratures, which were calculated approximately 
by Trunin et al. [1971b ], have been calculated 
according to the method described earlier. The 
results are plotted against Hugoniot pressure 
(Figures 7 and 8). It is notable that t he 5.5-Mb 
point is over 40,OOooK and that t he po' = 1.77 
poin t at 2.3 Mb is over 30,OOO°K. The tem­
peratures are changed by only a few per cent 
by using the different equations of state given 
in the previous sections. A greater uncertainty 
in the points is due to t he scatter in Hugoniot 
pressures, but this scatter would only cause 

TABLE 6. ' Coes ite' Par ameters for Various Cases 

Ko, d In y 
Case Mb Ko' (aKo/ H ') p" Y dTilV 6T 

1 1. 27 5.6 -0 .05 0 .43 - 0. 04 4. 9 
2 1. 36 4 .1 -0 .05 0 . 46 1.2 4.6 
3 0 .97t 7. 3 -0 .05 0 . 33 -0.15 6.4 

"Assumed va lues (see text) . 
t Fixed va1ue from Table 2. 
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Fig. 6. Hugoniot data of 'coesite' and calcu­
lated Hugoniots and 300 0 K isotherms from cases 
2 and 3 (Table 6) . Symbols are those used in 
Figures 1 and 5. 

t he points to move along the Hugoniot locus, 
which in a P-T plot is approximately radial 
from the initial point . 

The boundary between the 'coesite' and 
stishovite fields (Figure 8) is closely defined 
by the Po' = 1.77 and Po' = 1.55 gl cm' Hugo­
niot points, both of which show signs involving 
a mixture of the two phases, as was discussed 
earlier . 
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Fig. 7. Calculated Hugoniot temperatures of 
stishovite and 'coesite' versus Hugoniot pre sure. 
Box is enlarged in Figure 8. Symbols are those 
used in Figure 1. 

The Gibbs free energy is defined by 

G = H - TS = U + PV - TS (1 4) 
where H is t he enthalpy and S is t he ent ropy. 
Here G has the property [e.g. , Slater, 1939] 

(aG/ ap)T = V (15) 
We wish to evaluate G at t he state (P, V, T ), 
starting from the state (0, Yo, To) . (Atmos­
pheric pressure can be ignored here.) This 
evaluation will be done via the state (Po, Yo, T ), 
where poeT) = P(Vo, T ) (i .e., by first raising 
the temperature at constant volume and t hen 
compressing isothermally ) . From (14) 

G( Yo, T) = G( Yo, To) 

+ [U(Vo, T) - U(Vo, To)] + p oeT) Vo 

- [TS( Vo, T) - ToS(Vo, To)] (16) 

and from (15), upon integration, 

l
P ( T) 

G( V , T) = G(Vo, T) + Yep' , T) dP' 
P. ( T) 

(17) 

When the difference between the Gibbs free 
energies of stishovite and coesite at the state 
(Vo, To) are denoted by t:>. Go (i .e., 

where superscripts sand c denote stishovite and 
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Fig. 8. Calculated Hugonio t temperatures of 
stishovite and 'coesite' versus Hugoniot pressure 
compared wi th observed and calculated (solid and 
short-dashed) phase lines. Long-dashed line sepa­
rates stishovite and 'coesite' fi elds . Error bars 
represent variations due to the use of aitemative 
equations of state given in previous sections. 
Symbols are those used in Figure 1. 
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coesite, respectively) and 6.Ho and 6.So are de­
fined similarly, (14) gives 

6.Go = t:.Ho - Tot:.So (18) 

The values of t:.Ho and 6.So can be found from 
the results of Holm et ai. [1967]. At 298°K 
6.Ho = 10.58 kcaljmole = 7.36 X 100 ergs/ g 
and t:.So = - 3.01 caljmoleoK = -2.09 X 
100 ergs/ g°K. 

Now from (16) , using (18) , we obtain 

G'(Vo' , T) - G·(Vo·, T) = Po(T)(Vo' - Vo· ) 

+ U'(Vo', T) - U· (Vo· , T) 

- T[S'(Vo' , T) - S·(Vo·, T)] (19) 

To evaluate this expression we need U and S 
as fun ctions of T for both stishovite and coe­
site. These fun ctions are known accurately 
[H olm et ai., 1967] only up to 350°K. How­
ever, t he clifference U' (Vo', T) - u e(Voe, T) 
and the analogous difference for S can be ap­
proximated as being constant above about 3500 K 
for t he following reasons. The specific heats Cp 

of stishovite and coesite given by Holm et ai. 
[1967] converge toward each ot her above about 
150°K. Also, at 300oK, Cp differs from C. by 
about 0.6% for stishovite and by about 0.1% 
for coesite. Thus the C. will also converge at 
higher temperatures. Because U and S are 
integrals of C., U' - ue will approach a con­
stant value at higher temperatures, as wjll 
S' - se. Thus the differences in U and S in 
(19) can be replaced by t heir values at 298°K. 
When it is noted, finally, that 6.U. :::::; D.Ho, 
(19) becomes 

G'(Vo', T) - G·(Vo·, T) 

= Po(Vo' - Vo·) + t:.Ho - Tt:.So (20) 

The in tegral in (17 ) is more easily evaluated 
here by noting that 

I
p IV. V dP' = P(V', T) dV' 

P o 1" 

+ VP - VoPo (21) 

Equations 17, 20, and 21 and equation 3 for 
an isotherm allow t he Gibbs free energies of 
'coesite' and stishovite to be compared. 

The phase line result ing from these calcula­
tions is shown in Figure 8. The error bars 
represent variations due to the use of the alter-

native equations of state given in the previous 
sections. The uncertainty due to t he approxi­
mations used for U' - U· and S· - S· is 
difficult to estimate, but it should not be greater 
than a few per cent . Errors of 5% in U· - U· 
and S· - se would cause errors of about 1 
and 3%, respectively, in the calculated t ransi­
tion pressure at lO,OOO°K. 

As can be seen in Figure 8, the calculated 
phase line deviates considerably from the line 
eparating the 'coesite' and stishovite Hugoniot 

fields. The difference is about a factor of 2 in 
temperature, which would seem to be well out­
side the range of uncertaint ies of t he calcu­
lations. If this result is correct, t he phase ob­
tained in the shock-wave experiments is outside 
the coesite stability field. It would be surprising 
if tins phase were coesite, since it would be 
expected that the high temperatures involved 
would promote the t ransit ion to stishovite. 

An alternative interpretation of the data is 
suggested by re-examining Figure 8, in which 
the lower-pressure quartz-liquid-gas region of 
the phase cliagram is also shown [Levin et al ., 
1969 ; JANAF Tables, 1965]. The 'coesite'­
stishovite Hugoniot boundary intersects the 
calculated phase line at about 2500 oK, which 
is comparable to the melting t emperature of 
quartz. Is it possible that the 'coesite' is the 
liquid phase ? 

The plausibility of this hypothesis can be 
tested by using t he Clausius-Clapeyron relation 
for the slope of a phase line: 

dP/ dT=t:.S/ t:.V (22) 

where t:. denotes t he change through the phase 
t ransition. Let us apply this at the hypot hetical 
coesite-stishovite-liquid t riple point at 125 kb 
and 2500°K. We know t hat the volumes of the 
coesite and the liquid must be very similar 
at t his pressure because of the agreement be­
tween the coesite static-compression data and 
t he 'coesite' Hugoniot data (Figure 6) . If the 
difference in their volumes is zero, (22) shows 
that t he coesite-liquid phase line is horizontal in 
Figure 8 (also shown by line 1 in Figure 9, 
which illusthttes the relevant region of the 
phase diagram in more deta il). If the difference 
in volumes is not zero, the slope of the phase 
line can be estimated as follows. The coesite­
sti shovite phase line is still fairly well deter­
mined below the triple point. The coesite-
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stishovite volume difference is about 0.09 cm3/ g. 
The entropy difference is, then, from either the 
slope of the phase line (0.02 kb/ oK) and (22) 
or the approximation made in the prevIOUS 
section, about 2 X 106 ergs/ g°K. When the 
liquid-stishovite volume difference is assumed 
to be also about 0.09 cm3/ g, the slope of the 
liquid-stishovite phase line (0.06 kb/ oK) and 
(22) give the liquid-stishovite entropy difference 
as about 5 X 106 ergs/ g°K. When these results 
are combined, the liquid-coesite entropy dif­
ference is about 3 X 106 ergs/ g°K. From Fig­
ure 6 we can estimate a reasonable maximum 
volume difference between the coesite and the 
liquid to be about 0.01 cmo/ g. Equation 22 
then gives a slope of about 0.3 kb/ oK (line 2 
in Figure 9). Line 3, which has the same slope 
as the stishovite-liquid phase line, would imply 
that coesite has a volume similar to that of 
stishovite, which is clearly unreasonable. 

Lines 1 and 2 both extrapolate to the range 
of melting temperatures of quartz. There is a 
difficulty, though, since a similar set of relation­
ships would hold at the quartz-coesite-liquid 
t riple point, and thus we would be led to pre­
dict a slope of the quartz-liquid phase line 
rather different from the one shown. However, 
we may observe that the liquid would have 
to vary continuously from a density of about 
2.2 g/ cm3 at zero pressure (the density of fused 
quartz) to about 3.1 g/ cm3 at 100 kb. This 
variation would cause the phase lines to be 
concave downwards (Figure 9) in this range and 
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Fig. 9. Hypothetical silica phase diagram. Lines 
1, 2, and 3 correspond to different assumptions 
about the relative densities of the coesite and the 
liquid (see text). 

might allow these relationships to hold without 
contradiction. 

The preceding discussion is intended as a 
plausibility argument. It must be considered a 
serious possibility that a coesitelike liquid phase 
was produced in the shock-wave experiments. 

To return, finally, to the coesite-stishovite 
phase line below the hypothetical triple point, 
the calculated transition pressure at 300 0 K is 
78 kb. This value is in reasonable agreement 
with that of 69 kb estimated by Akimoto and 
Syono [1969] from their experimental results. 
It may also be compared with their values of 
85-95 kb calculated by using a rough estimate 
of the coesite compressibility. 

The average slope of the phase line is about 
0.023 kb/ oK, which compares very well with 
the value of 0.024 kb;oK found by Akimoto 
and Syono [1969]. 

Nate added in proof. An analysis by E. K. 
Graham (unpublished manuscript, 1972) of 
some of the stishovite Hugoniot data analyzed 
here yielded the values KQ = 3.35 Mb, Kr/ = 
5.5, and YQ = 1.64. A high value of Kr/ was also 
obtained by Ahrens et 01. [1970] (Ko = 3.0, 
Kr/ = 6.9, 'YQ '= 1.58). Although some differ­
ences between these analyses and the present 
analysis are due to the different equat.ions used, 
a critical difference is that cases 2 and 3 of 
the present analysis rely on the Hugoniot data 
of the more por,ous samples to constrain y, 
whereas those in the other analyses rely on 
Weaver's [1971] coefficient of thermal expan­
sion. The effect of these different approacbes 
can be seen by comparing case 1 with cases 
2 a.nd 3 above. Case 1 also relies on Weaver's 
data. The preference for case 2 rests on the 
critical assumption that the Griineisen param­
eter does not vary greatly with temperature 
at very high temperatures. 
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